
Introducing Cache Pseudo-Locking to reduce
memory access latency
Reinette Chatre

About me
Software Engineer at Intel (~12 years)

✢ Open Source Technology Center (OTC)

Currently
✢ Enabling Cache Pseudo-Locking in the Linux kernel

Previous Linux kernel work
✢ Ultra-wideband (UWB) enabling
✢ Maintainer of Intel Wireless WiFi (iwlwifi) driver

2

Goal

Introduce Cache Pseudo-Locking* and demonstrate that
it can be used to reduce memory access latency in the
presence of noisy neighbors.

3

*might not be supported on all processors

Agenda

✢ Overview of CPU caches
✢ Review of Cache Allocation Technology (CAT)
✢ Introduction to Cache Pseudo-Locking
✢ How to pseudo-lock memory to cache
✢ Cache Pseudo-Locking in Linux
✢ Cache Pseudo-Locking performance
✢ Current status and Future work

4

Overview of CPU caches

Hardware cache

✢ Memory has trade-off between size and speed. Fastest memory is
small, larger memory is slower.

✢ Cache memory is smaller than main memory, but closer to CPU to
be able to serve data faster than main memory.

✢ Systems address trade-off with multiple levels of cache.
✢ Some caches may be specific to data or instructions.
✢ Cache details available in

/sys/devices/system/cpu/cpu*/cache/index*

6

Hardware cache example 1

Intel® Celeron® Processor J3455 (Atom)

CPU 0

24KB
L1d

32KB
L1i

CPU 1 CPU 2 CPU 3

1MB Unified L2 Cache 1MB Unified L2 Cache

24KB
L1d

32KB
L1i

24KB
L1d

32KB
L1i

24KB
L1d

32KB
L1i

7

Hardware cache example 2

Intel® Xeon® Processor E5 v4 Family

32KB
L1d

32KB
L1i

CPU0 CPU1

256KB Unified L2

55MB Unified L3 Cache

CPU2 CPU3

256KB Unified L2

CPU42 CPU43

256KB Unified L2

32KB
L1d

32KB
L1i

32KB
L1d

32KB
L1i

8

Mapping a physical address to the cache*

Set Tag Data Tag Data Tag Data Tag Data

0

1

2

3

4

1023

way 0way 13way 14way 15

tag index (10bits) offset (6bits) Physical address 64byte cache line

9* general example only, not tied to any particular product

Review of Cache Allocation
Technology (CAT)

Multiprocessor systems share resources
CPU 0

Shared
Cache

CPU 1

11

Shared resources and interference

✢ Tasks may make heavy use of shared resources at varied intervals.
✢ Low priority task(s) on one CPU could affect high priority task(s) on neighboring

CPU(s), also referred to as “Noisy neighbors”.

CPU 0 CPU 1

12

Cache Allocation Technology (CAT)

CBM

0 0 0 0 1 1 1 11 1 1 1 0 0 0 0

CBM

✢ CAT restores cache fairness by using a capacity bitmask (CBM) to specify
the amount of cache space into which a CPU or task can fill.

CPU 0 CPU 1

13

Introduction to
Cache Pseudo-Locking

Cache fillCache fill

Cache miss can only fill into allocated region

✢ CAT restores cache fairness by restricting cache-fill to allocated cache region.

CPU 0 CPU 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

15

Cache hits still serviced from entire cache

✢ CPU can still read and modify data outside allocated region on cache hit.

CPU 0 CPU 1

CBM

0 0 0 0 1 1 1 11 1 1 1 0 0 0 0

CBM CACHE HITS

16

Cache hits still serviced from entire cache

✢ CPU can still read and modify data outside allocated region on cache hit.

CPU 0 CPU 1

CBM

0 0 0 0 1 1 1 11 1 1 1 0 0 0 0

CBM CACHE HITS

17

Cache Pseudo-Locking

✢ Preload memory into region of cache and then orphan it (no fill possible).
✢ Cache region only serves cache hits to the “pseudo-locked” memory.

CPU 0 CPU 1

CBM

0 0 0 0 0 1 1 11 1 1 0 0 0 0 0

CBM CACHE HITS

18

How to pseudo-lock memory to
cache

Pseudo-lock physical memory to cache

1. Ensure cache region not in any active CBM.

2. Specify CBM of cache region to be pseudo-locked.

3. Contiguous region of physical memory of special size and alignment
allocated and cleared.

4. Prevent system from entering deeper C-state that affect cache.
5. Kernel thread: clear cache, with interrupts disabled: activate pseudo-lock

CBM, read physical memory into cache, de-activate pseudo-lock CBM .
6. Pseudo-locked memory exposed as character device.
7. No CBM allowed to overlap with pseudo-lock region.

0 0 0 1 1 0 0 0

Physical mem

0 0 0 0 0 1 1 11 1 1 0 0 0 0 0

Cache

/dev/pseudo_lock/NAME
20

How to read memory into cache …

CBM specifies which region of cache can be filled into

1. Ensure variables describing physical memory are in registers and/or L1 cache.
2. Memory traversed using kernel logical addresses. Consider the page walker as

it populates the paging structure caches and Translation Lookaside Buffer
(TLB).

Loop over data twice: first loop at stride of PAGE_SIZE, to populate paging
structure caches; second loop at stride of cache line size.

3. Disable hardware prefetchers.
4. Add barriers to prevent speculative execution of loop used to traverse the

memory.

0 0 0 1 1 0 0 0

Physical mem

Cache

21

Map pseudo-locked memory to user space
✢ User space maps (mmap()) pages of pseudo-locked

memory into its own address space.
fd = open("/dev/pseudo_lock/NAME”, …);
ptr = mmap(…, fd, …);

✢ Pseudo-locked memory can be mapped by multiple
tasks.

✢ Pseudo-locked cache region in unified cache so user
space could copy critical data and/or instructions to
pseudo-locked memory.

Physical mem User VM

mmap()

mmap()

User VM

22

Low latency memory in user space

User VM

Cache

/dev/pseudo_lock/NAME

✢ User space obtains cache access latency interacting
with data and instructions located in pseudo-locked
memory.

23

Cache Pseudo-Locking in Linux

Test system: Intel® Celeron® Processor J3455 (Atom)

CPU 0

Intel® NUC NUC6CAYS

1MB L2 Cache 1MB L2 Cache

L1 cache L1 cache

CPU 1 CPU 2 CPU 3

L1 cache L1 cache

8 bit CBM, 1 bit represents 128KB
25

Cache Allocation Technology (CAT) interface
✢ Platform needs to support CAT – look for cat_l[23] in /proc/cpuinfo
✢ Kernel compiled with CONFIG_INTEL_RDT=y
✢ New resctrl filesystem introduced as part of CAT enabling

mount -t resctrl resctrl /sys/fs/resctrl
grep -r . /sys/fs/resctrl/info/*
/sys/fs/resctrl/info/last_cmd_status:ok
/sys/fs/resctrl/info/L2/min_cbm_bits:1
/sys/fs/resctrl/info/L2/shareable_bits:0
/sys/fs/resctrl/info/L2/num_closids:4
/sys/fs/resctrl/info/L2/bit_usage:0=SSSSSSSS;1=SSSSSSSS
/sys/fs/resctrl/info/L2/cbm_mask:ff

26

CAT Interface (continued)
✢ By default all CPUs and tasks run with default CBM set to fill to entire cache.

grep -r . /sys/fs/resctrl/* | grep -v info

/sys/fs/resctrl/cpus:f

/sys/fs/resctrl/cpus_list:0-3

/sys/fs/resctrl/mode:shareable

/sys/fs/resctrl/schemata:L2:0=ff;1=ff

/sys/fs/resctrl/size:L2:0=1048576;1=1048576

/sys/fs/resctrl/tasks:1

/sys/fs/resctrl/tasks:2

/sys/fs/resctrl/tasks:3

[SNIP]

CBM

27

Example: Pseudo-lock 256KB memory to cache

CPU 0 CPU 1 CPU 2 CPU 3

✢ High priority task needing low latency pseudo-locked memory to run on CPU3.
✢ Task profiling or monitoring reveals memory requirements – may include data

and instructions.
28

Pseudo-lock physical memory to cache

1. Ensure cache region not in any active CBM.

2. Specify CBM of cache region to be pseudo-locked.

3. Contiguous region of physical memory of special size and alignment
allocated and cleared.

4. Prevent system from entering deeper C-state that affect cache.
5. Kernel thread: clear cache, disable interrupts, activate pseudo-lock CBM,

read physical memory into cache, de-activate pseudo-lock CBM .
6. Pseudo-locked memory exposed as character device.
7. No CBM allowed to overlap with pseudo-lock region.

0 0 0 1 1 0 0 0

Physical mem

0 0 0 0 0 1 1 11 1 1 0 0 0 0 0

Cache

/dev/pseudo_lock/NAME
29

Step1: Ensure cache region not in any CBM
echo 'L2:1=0xfc' > /sys/fs/resctrl/schemata

cat /sys/fs/resctrl/schemata

L2:0=ff;1=fc

cat /sys/fs/resctrl/size

L2:0=1048576;1=786432

cat /sys/fs/resctrl/info/L2/bit_usage

0=SSSSSSSS;1=SSSSSS00

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

30

Pseudo-lock physical memory to cache

1. Ensure cache region not in any active CBM.

2. Specify CBM of cache region to be pseudo-locked.

3. Contiguous region of physical memory of special size and alignment
allocated and cleared.

4. Prevent system from entering deeper C-state that affect cache.
5. Kernel thread: clear cache, disable interrupts, activate pseudo-lock CBM,

read physical memory into cache, de-activate pseudo-lock CBM .
6. Pseudo-locked memory exposed as character device.
7. No CBM allowed to overlap with pseudo-lock region.

0 0 0 1 1 0 0 0

Physical mem

0 0 0 0 0 1 1 11 1 1 0 0 0 0 0

Cache

/dev/pseudo_lock/NAME
31

mkdir /sys/fs/resctrl/p1

echo pseudo-locksetup > /sys/fs/resctrl/p1/mode

grep -s . /sys/fs/resctrl/p1/*

/sys/fs/resctrl/p1/mode:pseudo-locksetup

/sys/fs/resctrl/p1/schemata:L2:uninitialized

/sys/fs/resctrl/p1/size:L2:0=0;1=0

grep . /sys/fs/resctrl/p1/*

/sys/fs/resctrl/p1/cpus:0

/sys/fs/resctrl/p1/mode:shareable

/sys/fs/resctrl/p1/schemata:L2:0=ff;1=ff

/sys/fs/resctrl/p1/size:L2:0=1048576;1=1048576

Step2 to Step 7: Specify CBM to pseudo-lock

32

echo 'L2:1=0x3' > /sys/fs/resctrl/p1/schemata

ls -l /dev/pseudo_lock/p1

crw------- 1 root root 243, 0 Aug 2 06:02 /dev/pseudo_lock/p1

Step2 to Step 7: Specify CBM to pseudo-lock

grep -s . /sys/fs/resctrl/p1/*

/sys/fs/resctrl/p1/cpus:c

/sys/fs/resctrl/p1/cpus_list:2-3

/sys/fs/resctrl/p1/mode:pseudo-locked

/sys/fs/resctrl/p1/schemata:L2:1=3

/sys/fs/resctrl/p1/size:L2:1=262144

grep . /sys/fs/resctrl/info/L2/bit_usage

0=SSSSSSSS;1=SSSSSSPP

33

Putting it together
root@intel-corei7-64:~# cat /proc/1644/maps
00400000-00401000 r-xp 00000000 b3:02 835661 /home/root/tests/user_example
00600000-00601000 r--p 00000000 b3:02 835661 /home/root/tests/user_example
00601000-00602000 rw-p 00001000 b3:02 835661 /home/root/tests/user_example
7faefc3c0000-7faefc555000 r-xp 00000000 b3:02 1566788 /lib/libc-2.25.so
7faefc555000-7faefc754000 ---p 00195000 b3:02 1566788 /lib/libc-2.25.so
7faefc754000-7faefc758000 r--p 00194000 b3:02 1566788 /lib/libc-2.25.so
7faefc758000-7faefc75a000 rw-p 00198000 b3:02 1566788 /lib/libc-2.25.so
7faefc75a000-7faefc75e000 rw-p 00000000 00:00 0
7faefc75e000-7faefc782000 r-xp 00000000 b3:02 1566402 /lib/ld-2.25.so
7faefc974000-7faefc977000 rw-p 00000000 00:00 0
7faefc97b000-7faefc97f000 rw-s 00000000 00:06 57418 /dev/pseudo_lock/p1
7faefc97f000-7faefc981000 rw-p 00000000 00:00 0
7faefc981000-7faefc982000 r--p 00023000 b3:02 1566402 /lib/ld-2.25.so
7faefc982000-7faefc984000 rw-p 00024000 b3:02 1566402 /lib/ld-2.25.so
7ffe40a4b000-7ffe40a6c000 rw-p 00000000 00:00 0 [stack]
7ffe40b90000-7ffe40b93000 r--p 00000000 00:00 0 [vvar]
7ffe40b93000-7ffe40b95000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

34

Cache Pseudo-Locking
performance

Testing interface
There is no instruction to query if provided physical address is present in cache.

Platforms have hardware performance monitoring mechanisms. Fine grained control
possible in kernel (interrupts and hardware prefetchers disabled).

MEM_LOAD_UOPS_RETIRED. L2_HIT
MEM_LOAD_UOPS_RETIRED. L2_MISS

New debugfs directory for each pseudo-locked region.

/sys/kernel/debug/resctrl/NAME

debugfs file pseudo_lock_measure triggers measurement, data captured in
tracepoints.

Count cache hits and misses while reading at cache line granularity from pseudo-locked
memory. Tracepoints: pseudo_lock_l2 and pseudo_lock_l3.

36

Test if memory is in the cache
:> /sys/kernel/debug/tracing/trace

echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable

echo 2 > /sys/kernel/debug/resctrl/p1/pseudo_lock_measure

echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable

cat /sys/kernel/debug/tracing/trace

tracer: nop

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 pseudo_lock_mea-6992 [002] 6339.033465: pseudo_lock_l2: hits=4096 miss=0

256KB/64bytes =
4096 cache lines

37

User space memory access latency
Goal: Compare latency of reading pseudo-locked memory region to latency of
reading malloc() (with mlockall()) region of same size.

Measurements taken using system’s Time-stamp Counter (TSC) – also referred to
as cycles.
Non Real-Time kernel with no optimizations to reduce jitter.

The test
✢ One measurement = number of cycles to read random 32 bytes from memory region
✢ One test iteration = (mem_size / 32) measurements, sleep for 2 seconds
✢ 10 test iterations
✢ With noisy neighbor:

stress-ng -C 10 --taskset 2 --cache-level 2 –aggressive –t 0
38

User space latency results
✢ Significantly less

variability in latency
experienced by task
using pseudo-locked
memory.

✢ Median Cache Pseudo-
Locked memory access
latency is ~7 times
lower than median
malloc() memory
access latency. (Q3 ~8
times lower, 99th
percentile ~38 times
lower).

39

Current status and Future work

Current Status and Future work

Current Status
✢ CAT supported since Linux v4.10.
✢ Cache Pseudo-Locking support will be in Linux v4.19.

Future work
✢ Restore of Cache Pseudo-Locked regions on detect of WBINVD.
✢ Use CLFLUSH/CLFLUSHOPT as cache clearing instruction instead of WBINVD.
✢ Research the potential of including page tables into pseudo-locked region.
✢ Simpler techniques to relocate instructions to pseudo-locked memory.

41

More information
✢ CAT and Cache Pseudo-Locking forms part of Intel® Resource Director

Technology framework:

✢ https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html

✢ Linux support of RDT documented in kernel source
Documentation/x86/intel_rdt_ui.txt

Cache Memory Bandwidth

Monitoring Cache Monitoring
Technology (CMT)

Memory Bandwidth
Monitoring (MBM)

Allocation Cache Allocation
Technology (CAT)

Memory Bandwidth
Allocation (MBA)

42

Questions?
Thank you!
reinette.chatre@intel.com

